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The thermodynamics of a simple model, containing the minimum set of features required to provide liquid
crystal-like phase behavior and the dipolar coupling observable in the NMR spectrum of orientationally
ordered fluids, are presented within the framework of Onsager theory. The model comprises a fluid of hard
spherocylinders with a pair of embedded freely rotating magnetic dipoles. The behavior of the isotropic-
nematic phase transition is explored as a function magnetic field strength and of the relative orientation
between the nematic director and the external magnetic field. When the field and director are aligned the phase
diagram is similar to those predicted for a hard rod fluid in flow fields, electric fields, and magnetic fields, with
the field promoting orientational order in the fluid and the isotropic-nematic phase transition being replaced by
a paranematic-nematic phase transition. In contrast, when the field and director are perpendicular, the field
destabilizes the nematic phase and the phase transition is shifted to higher densities. The variation of the mean
magnetic moment and the dipolar coupling are examined as a function of the orientational structure of the fluid.
The model is used to support the hypothesis that dipolar couplings observed in the spectra of human leg muscle
originate from nematiclike liquid crystal phases in relatively small metabolite molecules. The fitted theoretical
predictions of the dependence of the dipolar coupling on the orientation of the field with respect to the nematic
director are shown to provide a good description of the experimental data.
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INTRODUCTION

NMR spectroscopy is used to determine molecular com-
position and conformation. Of particular interest for the de-
termination of molecular structure is the intramolecular di-
polar coupling between magnetic dipoles. In an isotropic
fluid this coupling averages to zero through random free ro-
tation. However, in an ordered fluid, such as a nematic liquid
crystal, the dipole-dipole coupling becomes nonzero and re-
sults in peak splitting in the NMR spectrumf1g. Experiments
are usually carried out in which a sample of the molecule of
interest is dissolved in a liquid crystal solvent. The aligned
solvent restricts the rotational motion of the molecules, im-
parting weak orientational order to the solute molecules. This
weak orientation is used to determine the alignment of the
particular chemical bonds connecting two moieties that are
visible to NMR.

In contrast to its application in analytical chemistry, in an
in vivo NMR spectroscopy experiment the molecules of in-
terest are usually well known, however, the biological envi-
ronment in which the molecules are contained is less well
understood. As such, one of the challenges of MR spectros-
copy should be to probe the biological environment, a hy-
pothesis recently discussed by Boeschf2g. In particular, the
dipolar coupling resulting from orientational ordering has
been observed for metabolites in skeletal musclef3–7g.

Recently Sandström and co-workers demonstrated how
statistical mechanics, in the form of molecular dynamics

simulationsf8,9g, could be used to interpret NMR spectra in
terms of detailed structural information about a molecule.
However, the complexity of the biological environment
makes the use of atomistic molecular dynamics much less
feasible. As a result, the object of this work is to provide a
simplified model into which more detailed interactions can
be built. The two most important features in the model are
the inclusion of the intramolecular dipolar coupling and a
fluid that will form an ordered mesophase. The simplest
manner of promoting orientational order into a fluid is
through anisotropy in the harsh, short-ranged repulsive inter-
actions. In 1949 Onsager provided a theory for a fluid of
hard rodsf10g. The theory predicted that at a sufficiently
high density the hard rod fluid would spontaneously undergo
a phase transition from the isotropic phase to the orienta-
tional ordered nematic phase. Here, we examine a fluid of
hard spherocylinders, a cylinder of lengthL and diameterD
capped by a hemispherical cap also of diameterD. The
spherocylinder fluid is used because the thermodynamics of
this fluid have been studied in detail and its phase diagram
carefully mappedf11,12g.

Two freely rotating magnetic dipoles are embedded in the
spherocylinders. Dipoles in the same molecule interact
through the direct dipolar coupling. However, dipoles in dif-
ferent molecules do not interact. The fluid is exposed to an
external magnetic field that interacts with the dipoles. The
thermodynamic and magnetic properties of the fluid are ob-
tained using Onsager’s theory in both the isotropic and nem-
atic phases.

THEORY

Consider an ensemble ofN spherocylinders that are con-
fined to a volumeV at a constant temperatureT. The sphero-
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cylinders interact with each other through the following pair-
wise potential:

Usr̄ i,j,V̂i,V̂ jd =H`, r̄ i,j P VexsV̂i,V̂ jd
0 otherwise.

J s1d

Here r̄ i,j is the vector joining the centers of mass of two

spherocylindersi and j and V̂ j is the unit vector describing

the orientation of moleculej . VexsV̂i ,V̂ jd is the excluded
volume between two molecules with fixed orientation.

Embedded in each spherocylinder are two permanent
magnetic dipoles. The centers of the dipoles lie on the center
line of the spherocylinder and are separated by the distance
rd, see Fig. 1. The dipoles are free to rotate and couple to an
external magnetic fieldBo as

UDsuBd = − mB0 cosuB. s2d

Here, m is the magnitude of the dipole moment,Bo is the
magnitude of the external field, anduB is the angle between
the dipole vector and the field.

In addition to this coupling, each pair of dipoles in a
molecule are coupled through the usual direct dipole-dipole
coupling,

UDDsV̂i,V̂1,V̂2d = −
m0m2

4prd
3 f3sV̂i · V̂1dsV̂i · V̂2d − sV̂1 · V̂2dg.

s3d

Here Vi is the vector joining the centers of the dipoles and
m0 is permeability. In this case the dipole-dipole vector has
the same orientation as the molecule in which the dipoles are
embedded.V1, and V2 are the orientations of the two di-
poles. In common with other theoretical work involving
magnetic dipoles, it is assumed that dipoles in different mol-
ecules do not interactf13,14g. As a direct result of this as-
sumption, the magnetic dipoles are influenced by the orien-
tational structure of the hard spherocylinder fluid but are
independent of the position of the molecular centers of mass.
As a consequence the theory, in regard to the dipolar inter-
actions, does not differentiate between the nematic phase and
an orientationally ordered phase with additional positional
order such as the smectic phases.

In this work we use the idea of treating molecules of a
particular orientation as a distinct speciesf10g in conjunction
the assumption that magnetic dipoles in different molecules
do not interact to derive an expression for the Helmholtz free
energy of the dipolar spherocylinder fluid,

A

NkT
=E fsV̂idln fsV̂iddV̂i +E rsV̂1dln rsV̂1ddV̂1 +

Aideal

NkT

+E E E A1
DDsV̂i,V̂1,V̂2d

kT

3rsV̂1drsV̂2dfsV̂iddV̂1dV̂2dV̂i

+E E AexcesssV̂i,V̂ jd
NkT

fsV̂idfsV̂ jddV̂idV̂ j . s4d

The details of the derivation are given in Appendix A. The
first and last terms correspond to the free energy due to the
spherocylinders, while the second and fourth correspond to
the dipole contribution and the third term is the ideal gas
contribution.

The ideal gas contribution is given by

Aideal

NkT
= FlnSN

V
D − 1 + lnS h2

2pmkT
D3/2G , s5d

whereh is the Planck constant andm is the mass of a par-
ticle. The derivation of this term can be found in any stan-
dard statistical mechanics text book, e.g., Ref.f15g.

The free energy contribution due to the hard spherocylin-
ders, as derived by Onsagerf10g, is

E fsV̂idlnffsV̂idgdVi

+E E AexcesssV̂i,V̂ jd

NkT
fsV̂idfsV̂ jddV̂idV̂ j = sffg + Crffg

s6d

with

sffg =E fsV̂idln fsV̂iddV̂i s7d

and

rffg =
4

p
E E singsV̂i,V̂ jdfsV̂idfsV̂ jddV̂idV̂ j , s8d

wheregsV̂i ,V̂ jd is the angle between the molecular orienta-
tion of spherocylinderi and j andC=sL /Ddh whereh is the
packing fraction Nno/V and vo is the cylinder volume
pD2L /4.

It is worth noting that the Onsager free energy is an ac-
curate description of the thermodynamics of a fluid of hard
spherocylinders only when the spherocylinder length is suf-
ficiently large to drive the isotropic-nematic phase transition
to low densities, where the higher order terms in the virial
expansion become negligible. For shorter rods the Onsager
formalism is less accurate. However, it is known that the

FIG. 1. Schematic representation of the spherocylinder model.
The spherocylinder comprises a cylinder of lengthL and diameter
D capped by two hemispherical caps of diameterD. Embedded in
the spherocylinder are two magnetic dipoles, represented by the two
arrows. The dipoles are free to rotate and their centers lie on the
center line of the cylinder. They are separated by a distancerd.
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Onsager free energy does reproduce the salient features of
the phase diagram, with the added advantage that the sphero-
cylinder length and the packing fraction are coupled in a
single parameter. It is possible to obtain a more accurate
expression for the Helmholtz free energy using the decou-
pling approximation of Parsonsf25g, however, this approach
does not affect the general features of the phase diagram.
Since the aim of this work is to investigate the effects of the
intramolecular dipole-dipole coupling on the isotropic-
nematic phase transition and the effects of nematic ordering
on the NMR spectrum of a model fluid the Onsager formal-
ism should provide a suitable framework.

The final contribution to the free energy comes from the
intramolecular interaction between the dipoles embedded in
a molecule and the coupling of the dipoles to an external
magnetic field. We will deal with this contribution in more
detail.

At fixed dipole and molecular orientation, the energy of
one molecule in the magnetic fieldBo is given by

UsV̂i,V̂1,V̂2d = − Bom cosuB1 − Bom cosuB2

−
m0m2

4prd
3 f3sV̂i · V̂1dsV̂i · V̂2d − sV̂1 · V̂2dg,

s9d

whereuBk is the angle between the magnetic field and the
dipole k. The single particle partition function can then be
obtained through

Q1
DDsV̂i,V̂1,V̂2d = expS−

UsV̂i,V̂1,V̂2d
kT

D . s10d

The Helmholtz free energy can now be obtained by using the
usual thermodynamic relationship

A1
DDsV̂i,V̂1,V̂2d

kT
= −

Bom

kT
cosuB1 −

Bom

kT
cosuB2

−
m0m2

4prd
3kT

f3sV̂i · V̂1dsV̂i · V̂2d

− sV̂1 · V̂2dg. s11d

The free energy of the full fluid is obtained from the
weighted integral of Eq.s16d

A1
DD

kT
= −

Bom

kT
E cosuB1rsV̂1ddV̂1

−
Bom

kT
E cosuB2rsV̂1ddV̂1

−
m0m2

4prd
3kT

E E E f3sV̂i · V̂1dsV̂i · V̂2d − sV̂1 · V̂2dg

3rsV̂1ddV̂1rsV̂1ddV̂1fsV̂iddV̂i . s12d

It is clear from Eq.s4d that the Helmholtz free energy is a
functional of the dipole orientational distribution function
sDODFd and the molecular orientational distribution function

sMODFd. At this point we introduce the following function
for the DODF:

rsV̂1d =
a

sinhsad
expfa cossuB1dg, s13d

whereuB1 is the angle between the direction of the external
field and the dipole orientation anda is a variable parameter.
This form of the DODF has been chosen because it is the
exact solution for the free energy minimization of free non-
interacting dipole, this derivation is provided in Appendix B.
Substituting this function into Eq.s12d and setting the dipo-
lar coupling to zero, as is the case in the isotropic phase,
gives the exact Langevin free energyf13–15g with

a =
nBom

kT
, s14d

wheren is the number of dipoles per molecule. In the nem-
atic phase the dipolar coupling term in Eq.s12d is nonzero
and since it depends on DODF, it is clear that Eqs.s13d and
s14d are not necessarily the analytical solution to the mini-

mization of the free energy with respect torsV̂1d. However,
since the dipole moment appears in the dipolar coupling term
as a square, this term cannot promote antiparallel alignment
of the dipoles. As such the dipolar term either promotes di-
polar ordering if the contribution to the free energy is nega-
tive, or promotes dipolar disorder if the free energy contri-
bution is positive. The sign of the dipolar coupling term is
determined by the angle between the field and the nematic
director. The limits of dipolar ordering remain the same as
the isotropic case, namely total disorder or full alignment.
The DODF describes the probability of finding a dipole at a
given orientation and the functional form in Eq.s13d has
already been shown to describe the limiting distributions. As
mentioned above, the dipolar coupling term does not pro-
mote any new orientational behavior of the dipole system,
rather it perturbs the existing orientation order, and as such it
seems reasonable that the shape of the distribution function
will be similar to that found in the isotropic phase. However,
the effects of the dipolar coupling are such that at a given set
of parameters,N, V, T, m, B0, rd, the value ofa that mini-
mises the free energy will not be the value given in Eq.s14d.
With the intramolecular dipolar coupling included it becomes
necessary to determinea by minimizing the free energy for
each set of parameters,N, V, T, m, B0, rd. Substituting Eq.
s13d into Eq. s12d, expanding the dot products and integrat-
ing over the dipole orientations gives

A1
DD

kT
=

2mB0

kT
Lsad −

m0m2

4prd
3kT

Lsad2

3E P2„cosuBsV̂id…fsV̂iddV̂i . s15d

Here uBsVid is the angle between the external field and the
molecular orientation,Lsad is the Langevin function,
scotha−1/ad andP2sxd is the second Legendre polynomial.
The two orientations are coupled because the integration
over the dipole orientations has been carried out under the
assumption that the external field coincides with thez direc-
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tion of an arbitrary Cartesian coordinate framework. Equa-
tion s13d must also be substituted into the second term in Eq.
s4d and the necessary integrals performed, giving

E rsV̂1dln rsV̂1ddV̂ = lnS a

sinha
D + aLsad. s16d

The minimization of the Helmholtz free energy with respect
to the DODF determines the magnetic properties of the fluid.
In addition the orientational structure of the fluid must be
determined by minimizing the free energy with respect to the
MODF. To do this we follow the method proposed by Lasher
f16g and described in detail by Lekkerkerkeret al. f17g in
their review of Onsager theoryf18g. The nematic phase, by
definition, is cylindrical symmetric, therefore the MODF
only depends on the polar angle of the molecules. It is pos-
sible to describe the MODF with a particular functional form
and a single variable parameter as proposed by Onsager.
However, the assumption of a particular functional form has
been shown to overestimate the orientational order and tran-
sition densities at the isotropic-nematic phase transitionf17g.
On the other hand, as suggested by Lasherf16g, the MODF
can be represented as a Legendre series with unknown coef-
ficients,

fsuid = o
n=0

`

a2nP2nscosuid. s17d

This expansion is appropriate for any functional form with
the symmetry properties described above, thus removing the
need to enforce a particular shape of the MODF.

The sing kernel in Eq.s8d can be expanded as a Legendre
series and the explicit dependence on the molecular orienta-
tions determined using the addition theorem for Legendre
polynomials. Substituting Eq.s17d into Eq. s6d and perform-
ing the necessary integrations gives

sffg + Crffg = 2pE o
n=0

`

a2nP2nscosuidlnfa2nP2nscosuidg

3d cosui + C16p2o
n=0

`
2

4n + 1
a2n

2 C2n s18d

for the contribution to the free energy from the spherocylin-
ders. The first term on the right hand side of this equation has
no analytical form; however, the integral is evaluated nu-
merically using a 64 point Gaussian quadrature.

In order to carry out these integrals it is necessary to
assume that the director of the nematic phase is coincident
with thez axis of an arbitrary Cartesian framework. The last
term in Eq.s15d also depends on the molecular orientation,
however, in its present form the external field is coincident
with the z axis. Using the addition theorem for Legendre
polynomials the field orientation and molecular orientation
can be decoupled within the framework that the nematic di-
rector lies along thez axis. Equations17d can be substituted
into Eq. s15d and the necessary integrals performed, giving

A1
DD

kT
=

2mB0

kT
Lsad −

m0m2

rd
3kT4p

Lsad22

5
a2P2scosuBd s19d

as the full dipolar contribution to the free energy. At this
point the explicit orientational dependence of the nematic
director and the field orientation becomes apparent.

The full Helmholtz free energy is given by

A

NkT
=

Aideal

NkT
+ ssfd + C16p2o

n=0

`
2

4n + 1
a2n

2 C2n + lnS a

sinha
D

+ aLsad +
2mB0

kT
Lsad −

m0m2

rd
3kT4p

Lsad22

5
a2P2scosuBd

s20d

and is a function of a set of unknown parametersa anda2n.
In order to obtain the thermodynamic properties the free en-
ergy must be minimized with respect to all these parameters.
In this work the free energy is minimized directly using the
simplex algorithm described in Numerical Recipesf19g.

Having minimized the free energy, the thermodynamic
properties, pressureP, chemical potentialmcp and mean
magnetic momentMB of the nematic and isotropic phases
can be determined using the usual thermodynamic relation-
ships,

P = − S ]A

]V
D

B0,N,T
,

mcp = S ]A

]N
D

B0,V,T
, s21d

MB = S ]A

]B0
D

N,V,T
.

The order parameterP2, which is defined as

P2 =E fsV1dP2„cossu1d…dV1 =
2

9
a2, s22d

is used to describe the bulk orientational order in the nematic
phase. The phase transition between phases can be deter-
mined by ensuring that the pressure, chemical potential, and
temperature of the coexisting phases are equal.

For practical reasons the Legendre series in Eq.s20d must
be truncated at some finite number. Lasherf16g and Lek-
kerkerkerf17g have both examined the convergence of the
thermodynamic properties at the isotropic-nematic phase
transition with respect to the truncation of the Legendre se-
ries. They found that convergence was achieved atn=7,
however, Lekkerkerker reports a slight discrepancy between
the coexisting nematic density obtained in his work and the
results obtained by Lasher. Using the simplex method to di-
rectly minimize the free energy we found the same discrep-
ancy atn=7, however, atn=8 our results converge to the
same values as those reported by Lekkerkerker.

Although fields of the order of 14 T are required to drive
the isotropic-nematic phase transitionf20g it is common to
find that the director of a typical nematic liquid crystal will
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be aligned parallel or perpendicular to a much weaker exter-
nal field f1,21g. A number of studies have examined the ef-
fect of an external field on the isotropic-nematic phase tran-
sition in a fluid of hard rods using the Onsager theory
f20,22–24g and the decoupling approximation of Parsons
f25g. In these studies, based upon the assumption that the
nematic will align with the field, the field is assumed to
couple directly to the principle axis of the molecule through
the following dependence:

Ufieldsud = − A cos2 u, s23d

where u is the angle between the field and the molecular
orientation andA is a constant that depends upon the nature
of the field, e.g., magnetic, electric or flow field. In the case
of the magnetic fieldA=DxB0

2/2, andDx is the anisotropy of
the diamagnetic susceptibility of a single particle. The cos2

form of Eq. s23d is similar to dipolar coupling term in Eq.
s19d, however, Eq.s19d depends upon the mean magnetic
moment per molecule, the dipole-dipole separation, and the
orientation of the vector joining the two dipoles, which, in
this case, happens to be the same as the molecular orienta-
tion.

In these previous reports the field is always considered to
be aligned with the nematic director. In contrast, the results
obtained by Kreis and Boeschf3g and Asllani and co-
workersf4,6,7g have demonstrated an angular dependence of
the dipolar coupling, which suggests thatin vivo, the director
is constrained to a particular direction. This feature occurs as
an implicit part of the current model and is introduced
through the dipole-dipole interaction term.

In order to provide results in dimensionless units the di-
ameter of a spherocylinder is used to scale all other distance
measure, i.e.,R=rd/D. In addition an energy parameter« is
introduced, this provides a dimensionless densityC
=sL /Ddh whereh is the packing fractionNno/V and vo is
the cylinder volumepD2L /4, a dimensionless temperature,
defined asT* =kT/«, dimensionless pressureP* =Pno/kT, di-
mensionless chemical potentialmCP

* =mCP/kT the squared di-
mensionless dipole moment,m*2 =m2m0/ s4pD3«d, dimen-
sionless mean magnetic momentM* =MBÎmo/ s4pD3«d, and

the dimensionless field strengthB* =B0
Î4pD3/Îm0«. The di-

mensionless dipolar coupling is defined asb* =b" /kT, where
b=−m0m2/4prd

3 is the dipolar coupling measured in Hz.

RESULTS

Results for field aligned with nematic director

To make a comparison with previous studies, we consider
the case when the field and the nematic director are aligned.
In this configuration the fluid of hard spherocylinders devel-
ops orientational order even at low densities. Figure 2sad
shows the change in the order parameter, as the density is
increased from the isotropic limit through the phase transi-
tion to the strongly ordered nematic phase at a number of
different field strengths. There is no order-disorder phase
transition as there is when the field is zero, however, if the
pressure-density isotherm is followed at constant field and
dipole moment a van der Waals–like loop is observed for

field strengths up to a critical value, Fig. 2sbd. Beyond the
critical field a single nematic phase is observed in which the
order parameter increases with the fluid density. This loop is
characteristic of a first order phase transition. By solving the
coexistence criteria, Eq.s21d, the densities between the two
coexisting phases can be determined at different field
strengths. The isotropic-nematic phase transition appears to
be replaced by a transition between a weakly ordered nem-
atic phase and a strongly ordered nematic phase. To distin-
guish between these two phases we adopt the nomenclature
of Vargaet al. f24g and refer to the weakly ordered phase as
the paranematic phase.

Fig. 3sad, shows the coexisting densities of the parane-
matic and nematic phases as a function of the field strength.
In this calculation the temperature and dipole moment were
fixed at 1. The figure shows a shift of the phase transition
from higher to lower densities in both phases as the field is
increased. It also shows a decrease in the density jump at the
phase transition up to a critical pointB* =0.683, after which
only the single nematic phase exists. Figure 3sbd shows the

FIG. 2. Order parameterP2 sad and dimensionless pressureP*

sbd plotted as a function of the dimensionless densityC for a range
of field strengthsB* , with m* =1.0 and temperatureT* =1.0. The
field is aligned parallel to the nematic director.
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FIG. 3. Phase behavior with the field and nematic director aligned.sad Dimensionless densityC–field strengthB* projection of the phase
diagram for spherocylinders with magnetic dipoles at constant dipole moment, with the same temperature and dipole moment as Fig. 2. The
black line shows the coexisting densities of the weakly order paranematic phase and the strongly ordered nematic phase.sbd Dimensionless
pressureP* ssolid lined and dimensionless chemical potentialsdashed lined of the coexisting phases plotted as a function of field strength.scd
Order parameterP2 in the paranematic phasesbroken lined and nematic phasessolid lined at the phase transition plotted as a function of field
strengthB* . sdd The dimensionless mean magnetic moment in the paranematicsbroken lined and nematicssolid lined coexisting phases
plotted as a function of field strength. The faint solid line represents the mean magnetic moment in an isotropic phase at the same density
as the paranematic phase.sed Dipolar coupling in the coexisting paranematicsbroken lined and nematicssolid lined phases.
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transition pressure and chemical potential as a function of
field strength. Both the pressure and chemical potential move
to lower values as the field strength is increased. In the case
of the pressure, where there is no contribution from the di-
poles, this effect can be accounted for due to the phase tran-
sition shift to lower densities. In the case of the chemical
potential the decrease is partly due to the decrease in the
transition density and partly due to the increased negative
contribution from the dipoles. Both plots end at the critical
point.

Figure 3scd shows the orientational order parameter in the
two coexisting phases at the phase transition. It is quite clear
from this plot that the phase transition happens between a
paranematic phase and a more strongly ordered nematic
phase, at field strengths that are one third of the critical field
or less. In fact, at these field strengths the paranematic phase
is almost isotropic. As the field strength increases, the order
in the paranematic phase increases quite rapidly while the
coexisting nematic phase becomes less ordered. The two
meet at the critical point where the order in both phases is
identical.

It is gratifying to note that despite the alternative descrip-
tion of the coupling between the intramolecular dipoles and
the external field the results obtained for the general phase
diagram are identical to those reported in similar works
f20,22–24g. This suggests that the current model does not
provide any less information than previous studies with the
additional advantage that we are able to explore the changes
in the bulk magnetization and the dipolar coupling as a func-
tion of the molecular phase.

Figure 3sdd shows the mean magnetic moment per dipole
in the two coexisting phases. It also shows the mean mag-
netic moment for the isotropic phase at the coexistence den-
sity of the paranematic phase. As may be predicted from the
results in Fig. 3scd, at low field strengths where there is vir-
tually no orientational order, the mean magnetic moment is
almost equal to its isotropic value. As the field increases and
the order increases, the mean magnetic moment is found to
be larger than in the equivalent isotropic phase. This is rela-
tively simple to understand. The dipoles are experiencing
two effects, first a tendency to align with the field which
results in the mean magnetic moment observed in the isotro-
pic phase, second the dipoles have a tendency to align nose
to tail, along the vector connecting the dipole centers. When
the angle between the field and the director is zero, the two
effects are acting in concert, resulting in an increase in the
mean magnetic moment. In the nematic phase, the mean
magnetic moment is much larger than the isotropic value.
Again this is a direct consequence of the much stronger ori-
entational order. The mean magnetic moment appears to in-
crease almost linearly in the weakly ordered phase, however,
in the strongly ordered phase there are two competing effects
that account for the shape of the curve. In the first case as the
field strength is increased, the mean magnetic moment will
increase, as expected. As the phase transition moves to lower
densities, the order in the nematic phase decreases, resulting
in a decrease in the dipolar coupling contribution. Thus at
low fields, the mean magnetic moment increases more rap-
idly than at field strengths closer to the critical field.

Figure 3sed shows the dipolar coupling in the two co-
existing phases. Both the orientational order and the mean

magnetic moment contribute to the dipolar coupling, initially
this results in a rapid increase in the magnitude of the cou-
pling in both phases as the field strength is increased. At field
strengths close to the critical field the order in the nematic
phase decreases and the mean magnetic moment increases
more slowly. This results in a decrease in the magnitude of
the coupling in the nematic phase while the coupling contin-
ues to increase in the paranematic phase.

It is important to note that contribution to the Helmholtz
free energy from the dipolar coupling and the dipole-field
coupling are linked, such that the minimum in the free en-
ergy is a balance between these contributions and the free
energy of the hard spherocylinder reference fluid.

Figure 4sad shows the density dependence of the mean
magnetic moment at constant field, dipole moment, and tem-
perature. For noninteracting dipoles the mean magnetic mo-
ment would not be expected to depend upon density and this
certainly is the case in the isotropic phase. However, as the
fluid develops orientational order, with the field aligned with
the director, the dipolar coupling term becomes nonzero, pro-
moting the alignment of dipoles with the field. The density
variation of the dipolar coupling is shown in Fig. 4sbd. As
expected from Eq.s24d the change in magnitude of the dipo-
lar coupling shows a similar shape to the density dependence
of the order parameter. This dependence is also mirrored in
the mean magnetic moment. It is quite apparent from Figs.
2sad, 4sad, and 4sbd that the density dependence of the bulk
magnetic properties arises purely from the density depen-
dence of the order parameter. What is less clear is why the
mean magnetic moment should have a linear dependence on
order parameter, Fig. 4scd, despite the nonlinear minimiza-
tion of the Helmholtz free energy with respect to the DODF.
Since the mean magnetic moment has this linear dependence
it might be expected that the dipolar coupling would also
have a linear dependence, especially considering the relation-
ship in Eq.s19d. However, as show in Fig. 4sdd the relation-
ship between the order parameter and dipolar coupling is
rather more complicated, undoubtedly a consequence of the
subtle interaction between the various contributions to the
free energy minimization.

Results for field perpendicular to the nematic director

Figure 5sad shows the dependence of the coexisting
phases at the isotropic-nematic phase transition on field
strength when the field is perpendicular to the nematic direc-
tor. In contrast to the previous results, increasing the mag-
netic field shifts the phase transition to higher densities. The
densities and the gap between the two coexisting phases both
increase. The phase diagram does not exhibit critical behav-
ior. This change in transition densities occurs because the
second Legendre polynomial has the value −0.5 at 90° and
the contribution to the Helmholtz free energy becomes posi-
tive. A decrease in the order parameter decreases the magni-
tude of the dipolar coupling which, in this case, reduces the
free energy.

Figure 5sbd shows the order parameter in the nematic
phase in the coexistence density at the phase transition. The
most apparent difference between this figure and Fig. 3scd is

EFFECTS OF INTRAMOLECULAR DIPOLAR COUPLING… PHYSICAL REVIEW E 71, 021702s2005d

021702-7



the absence of a paranematic branch. This is because the
phase transition at all fields happens between a completely
disordered isotropic phase and a nematic phase. There is no
gradual increase in orientational order before the phase tran-
sition, as observed in the parallel case. As the transition den-
sity of the nematic phase increases with increasing field, the
order parameter also increases. Although this theory does not
take into account positionally ordered phases such as smectic
liquid crystals or crystalline phase, it would be expected that
the isotropic-nematic phase transition would be interrupted
by a transition from the isotropic phase directly to a position-
ally ordered phase.

Figure 5scd shows the field dependence of the transition
pressure and chemical potential. As mentioned previously,
the dipole interactions do not contribute to the pressure and
predictably as the transition density rises, the transition pres-
sure also rises. On the other hand, the dipole interactions do

contribute to the chemical potential and as these negative
contributions increase in magnitude with increasing field.
The shift in transition density is relatively small in compari-
son to the previous results and the change in dipole contri-
bution dominates the change in the chemical potential. This
results in the observed decrease in the chemical potential.

Figure 5sdd shows the mean magnetic moment in the two
coexisting phases. The isotropic phase has usual Langevin
behavior with the parametera=2mB0/kT. The nematic phase
shows a significant decrease in the mean magnetization at the
phase transition. This occurs as the order parameter becomes
nonzero, and the dipolar coupling becomes positive and non-
zero, which increases the free energy. This increase in the
dipolar coupling is partly offset by a decrease in the mean
magnetic moment. Of course the decrease in the magnetic
moment results in a free energy penalty in the dipole-field
term. The increase in the dipolar coupling in the coexisting

FIG. 4. The density dependence of the mean magnetic momentM* sad and the dipolar couplingsbd at variable field strength with the same
temperature and dipole moment as Fig. 2. The dependence of the mean magnetic momentscd and the dipolar couplingsdd on the orientational
order parameterP2 at the same temperature and dipole moment assad and sbd and variable field strength. The solid lines represent stable
single phases and the broken lines metastable regions.
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FIG. 5. Phase behavior with the field and nematic director perpendicular.sad Dimensionless densityC–field strengthB* projection of the
phase diagram for spherocylinders with the same temperature and dipole moment as Fig. 2. The black line shows the coexisting densities of
the isotropic phase and the nematic phase.sbd Order parameterP2 nematic phase at the isotropic-nematic phase transition plotted as a
function of field strength.scd Dimensionless pressuressolid lined and dimensionless chemical potentialsbroken lined of the coexisting phases
plotted as a function of field strength.sdd The dimensionless mean magnetic moment in the isotropicsbroken lined and nematicssolid lined
coexisting phases plotted as a function of field strength.sed The field dependence of the dipolar coupling in the coexisting nematic phase.
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nematic phase, occurring as the orientational order increases
with field, is shown in Fig. 5sed.

As the field orientation changes from being parallel with
the nematic director to being perpendicular, we have shown
considerable differences in the thermodynamic and bulk
magnetic properties of the spherocylinder fluid at the
isotropic-nematic phase transition. These changes are also
evident in the dependence of the bulk magnetic properties of
the nematic phase on the order parameter, Fig. 6sad, and on
the density, Fig. 6sbd. In Fig. 6sad, we observe a linear de-
crease of the mean magnetic moment as a function of order,
accompanied by a linear increase in the dipolar coupling.
The magnitude of these changes is considerably smaller than
those observed when the field and director are parallel, even
at the higher field strengthB* =1, Fig. 6sad. The mechanism
for these changes was discussed above. The dependence of

the bulk magnetic properties on the density shown in Fig.
6sbd can also be easily understood from the previous discus-
sion relating the density and the order parameter with the
dipolar coupling and the mean magnetic moment.

Phase behavior at intermediate field orientations

The results for the parallel and perpendicular field align-
ments show two opposing phase diagrams, one in which the
dipolar interactions stabilise the nematic phase with respect
to the isotropic phase and the other in which the nematic
phase is less stable. These two examples represent the ex-
tremes in the phase diagrams since the two orientations rep-
resent the maximum positive and negative values of the sec-
ond Legendre polynomial. As the angle between the field and
director is increased from the parallel alignment, we would
expect that the absolute change in transition density would
decrease, as the magnitude of the dipolar coupling term de-
creases and the critical point would shift to higher field. At
the so-called magic angle,s54.74°d the dipolar coupling term
will be zero and the isotropic-nematic transitions will be
identical to the zero field case for all field strengths. Passing
through the magic angle the dipolar coupling contribution to
the free energy becomes positive, resulting in a destabiliza-
tion of the nematic phase. This will produce phase behavior
similar to that shown in Figs. 5 and 6, but with smaller
changes in the parameters. At 90° the phase behavior will be
as described previously.

Angular dependence of the dipolar coupling and mean
magnetic moment

Figure 7sad shows the angular dependence of the mean
magnetic moment at various field strengths at a fixed density
in the nematic phase. It is striking that there is a significant
change in the mean magnetic moment from the parallel ori-
entation to the perpendicular. AtB* =0.2 the ratio of the par-
allel to perpendicular moment is almost 3:1. Figure 7sbd
shows the angular dependence of the mean magnetic mo-
ment atB* =0.2 as the dipole moment is varied between 0.3
and 0.9. It becomes quite clear that the shape of the angular
dependence curve is dominated by the strength of the dipole
moment. This is to be expected since the dipolar coupling
term, which contains the angular dependence, depends upon
the dipole moment squared. Since the amplitude of the NMR
signal is directly proportional to the mean magnetic moment,
it may be possible to measure these changes of magnitude;
however, forin vivo measurements of the signal originating
from relatively small molecules this would be unlikely due to
the small intrinsic dipole moment of a proton. On the other
hand ferrocolloidsf26g, stable colloidal dispersions that have
stable permanent magnetic dipoles, can have dipole moments
that are orders of magnitude larger than the intrinsic moment
of a proton. The angular dependence of the mean magnetic
moment may be observable in these systems.

Figure 8 shows the angular dependence of the dipolar
coupling, under the same conditions as in Fig. 7sad. Clearly
all the curves exhibit a second Legendre polynomial–like

FIG. 6. sad The dependence of the mean magnetic moment
ssolid lined and the dipolar couplingsbroken lined on order param-
eter in the nematic phase with the field oriented perpendicular to the
nematic director and constant dipole moment,m* =1.0 and tempera-
ture T* =1.0. sbd The density dependence of the mean magnetic
momentslines marked with a circle at the phase transitiond and the
dipolar couplingslines marked with a square at the phase transitiond
with constant dipole moment,m* =1.0 and temperatureT* =1.0 and
the field oriented perpendicular to the nematic director.
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shape, passing through zero at the magic angle. However, if
this was the only influence on the shape of the curves, the
ratio of the magnitude of the dipolar coupling at parallel
alignment should be exactly twice the magnitude when the
field and director are perpendicular. The two should also
have opposite signs. This is not the case with the ratio of the
two values ranging from almost 5:1 whenB* =1.0 to 15:1
when B* =0.2. The reason for this variation in shape arises
because the dipolar coupling is proportional to the square of
the mean magnetic moment. As well as changing the shape
of the curve, this suggests that the dipolar coupling should
exhibit a significant dependence on field strength. Such a
suggestion is rather contentious since the dipolar coupling is
often reported as being independent of field strength. Ini-
tially, this would appear to be the case since Eq.s3d, does not
contain an explicit dependence on field strength. However,
the statistical mechanical ensemble average of this property
has been shown to depend on the mean magnetic moment, as
described previously, and this explicitly depends upon the
field strength.

Modeling the dipolar coupling from in vivo MR spectroscopy

Almost a decade ago, Kreis and Boesch reported mea-
surements of the dipolar coupling obtained from the calf
muscle of a human volunteerf3g. The nonzero dipolar cou-
pling suggested that there was some level of molecular or-
dering. However, the measurements did not show the broad
powderlike spectra that would be expected from a crystalline
structure. The authors concluded that almost complete mo-
tional averaging was taking place but that there was incom-
plete orientational averaging. These observations suggest
that the signal obtained originated from a nematic liquid
crystal. Measurements were taken with the subject’s leg po-
sitioned at ten different orientations to the main magnetic
field. The dipolar coupling observed for a particular pair of
peaks was found to change as the orientation of the leg
changed. This suggested that there was a constraint on the
preferred direction of orientation, since bulk liquid crystal-
line phases will tend to align, even with relatively weak mag-
netic fields

In order to support the conclusion of Kreis and Boesch
that the features of the NMR spectra they obtained may be
attributed to a nematic liquid crystal, it is useful to fit the
dipolar coupling data to results obtain from this theoretical
approach. To do this it is necessary to convert the dimension-
less dipolar couplings to values in Hz. This is achieved by
multiplying by kT/" s"=Planck’s constant divided by 2pd.
To perform the fitting on such a relatively small data set it is
also necessary to reduce the number of parameters. From Eq.
s19d it is clear that the temperature is a scaling factor that has
the same effect on both the dipole-field term and the dipole
coupling term. It is therefore convenient to define a dimen-
sionless temperatureT* =1 giving «=kT. It is also known
that the data were collected at 1.5 T, assuming a dipole sepa-
ration of 0.2 nm and a dimensionless separation,R=1, it is
possible to obtain the reduced field strength ofB* =0.0186.
The dipole separation is allowed to vary but the separation in
nanometres is assumed to be constant, so changes in the

FIG. 7. Dependence of the mean magnetic moment on the angle
between the field and the director atsad variable field and fixed
dipole momentm* =1.0 and temperatureT* =1.0 andsbd at variable
dipole moment and fixed field strengthB* =0.2 and temperature
T* =1.0.

FIG. 8. Dependence of the dipolar coupling on the angle be-
tween the field and the directoruB at variable field strength and
fixed dipole momentm* =1.0 and temperatureT* =1.0.
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dimensionless separation result in a change of the scaling
parameterD. In order to keep a fixed field, the dimensionless
field strength must be rescaled asD changes.

As pointed out by Kreis and Boesch, the angle measured
in their experiment was obtained from MR images and were
the angles between the magnetic field and the tibia or fibula.
This is not necessarily the orientation of the nematic director.
To account for a simple shift between the measured angle
and the director orientation a parameterf is introduced. The
fitting was performed at human body temperature, approxi-
mately 311 K, with the dimensionless dipole moment and
the density used as fitting parameters. The parameters were
obtained from the fitting are shown in Table I and the results
of the fitting shown in Fig. 9. The results of the fitting show
excellent agreement between the experimental and theoreti-
cal results. Importantly the density obtained is greater than
the transition density and therefore lies in a region of the
phase diagram where the nematic phase is the thermody-
namically stable phase. This lends some theoretical support
to the conclusions drawn by Kreis and Boesch. In addition,
the order parameter obtained from the fitting is considerably
larger than their value, reinforcing the suggestion that the

origin of the NMR signal is an orientationally ordered phase.
An estimate of the intrinsic dipole moment may be obtained
from the fitting results. This was found to be 4.397
310−24 J/T, a value that is rather large. However, such a
result should be expected considering the simplicity of the
model and the absence of a realistic molecular structure. The
shift anglef is found to be very close to the value obtained
by Kreis and Boesch.

Despite the simplicity of the model, the results suggest
that the current model could be used to map changes in the
dipolar coupling due to pathological changes in the muscle
tissue to density changes in the model fluid. However, in
using this model to describe the dipolar coupling observed in
the spectra of human muscle one must imagine that the in-
teraction of the molecules with the physical environment is
giving rise to a potential of mean force which is adequately
described by a single component model fluid. The results
presented in this work suggest that this model is sufficient to
describe the dipolar coupling, however, it does not provide a
great insight into the changes in muscle structure that might
give rise to the observed changes in the MR signal, beyond
establishing the fact that the freely moving molecules expe-
rience partial orientational averaging.

It is more likely that this simple model will be of use as a
model of the probe molecules in a theory where the muscle
fiber environment is more explicitly described. The fitting
process could subsequently be used to relate changes in the
spectroscopic data to changes in fiber density and orienta-
tion.

CONCLUSIONS

In this work the effects of an external magnetic field on
the isotropic-nematic phase transition of the fluid of hard
spherocylinders with a pair of freely rotating embedded mag-
netic dipoles are examined. The work takes into account the
coupling between the external field and the dipoles, and the
coupling between dipoles in the same molecules. This is in
contrast to a number of other studies where the coupling
between the molecular magnetism and the external field is
effectively modeled through anisotropy in bulk magnetic
susceptibility, aligned along the major molecular axis. The
model presented here provides a way to understand the de-
pendence of the bulk dipolar coupling, a property that can be
measured using NMR spectroscopy and the orientational or-
der in the liquid crystalline fluid.

When the external magnetic field and the nematic director
are aligned the fluid exhibits phase behavior that is very
similar to the phase behavior observed in previous studies
with the isotropic-nematic phase transition being replaced
with a transition between a weakly ordered nematic phase
and a more strongly ordered phase. As the field is increased
the first order phase transition gives way to a single continu-
ous nematic phase at a critical field strength. It is clear from
these results that the new model can still account for the
phase behavior described in previous studies, however, par-
allel alignment can be considered a single example of this
more general model.

In contrast to the parallel case, when the field and director
are perpendicular the nematic phase is destabilized with re-

TABLE I. Parameters obtained from fitting the dipolar coupling
obtained from the theory to the experimental data of Kreis and
Boeschf3g. C is the dimensionless density,f is the angle between
the orientation of the muscle fibers and the tibia or fibula,m* is the
dimensionless dipole moment,R* is the dimensionless separation
between the dipoles in a single molecule,B* is the dimensionless
field strength, andP2 is the order parameter in the model fluid. The
fitting was carried out at a dimensionless temperatureT* =1.

C
f sradd
fdegg m* R* B* P2

4.204 −0.0916
f−5.248g

0.0075 1.006 0.183 0.793

FIG. 9. Theoretical dipolar couplingb plotted as a function of
the angle between the field and the director obtained by fitting the
theory ssolid lined to the dipolar coupling data obtained by Kreis
and Boeschf3g sfilled circlesd.

WILLIAMSON, THACKER, AND WILLIAMS PHYSICAL REVIEW E 71, 021702s2005d

021702-12



spect to the isotropic phase and the phase transition moves to
higher densities as the field strength is increased. In this case,
at all field strengths the transition is between the orientation-
ally ordered nematic phase and the disordered isotropic
phase. At intermediate orientations the effect of the field is
weaker and in fact has no effect at the magic angle, 54.74°,
when the dipolar coupling contribution to the free energy
becomes zero, regardless of the strength of the orientational
order in the fluid. When the field-director orientation is
greater than the magic angle, the phase behavior is similar to
that of the perpendicular case. When the orientation is less
than the magic angle, the dipolar coupling term helps to sta-
bilize the orientational order in the fluid and a phase diagram
similar to the parallel case is observed.

In dimensionless units, the experimental conditions for1H
NMR are likely to fall close to the zero field region of the
phase diagram. In this region the orientational structure of
the fluid exerts little influence on the mean magnetic moment
and it is unlikely that the sensitivity of such an experiment
could be significantly increased through the use of liquid
crystal solvents. On the other hand, a great deal of work has
been invested in the development of ferrocolloidsf26g in
which the dipole moment of the colloidal particle can be
tailored. Such systems exhibit permanent dipole moments
that are orders of magnitude larger than the intrinsic dipole
moment of a proton. An understanding of the phase behavior
of these systems is important in the development of engi-
neering applications. From this point of view the magnetic
spherocylinder fluid offers a useful reference model for such
studies of phase behavior.

While the mean magnetic moment of an ensemble of pro-
tons may be insensitive to the changes in the orientation
structure of a fluid, the dipolar coupling is not. Although this
model is very simple, containing the minimum set of features
to exhibit nematic phase behavior and to describe the effects
of molecular structure on the bulk magnetic properties, it has
still provided a useful model for fitting the experimental data
obtained by Kreis and Boeschf3g. The results of the fitting
returned a density in the region of the phase diagram where
the nematic phase is stable and not the rather broad biphasic
region where the nematic phase is metastable. As such, even
in its current simplistic state the model provides a method for
mapping the spectroscopy data to a model fluid. Despite the
fact that spherocylinder fluid does not explicitly model the
biochemical environment or the type of physical structure
that might be envisioned in muscle, once it has been estab-
lished that there is imperfect orientational averaging of the
MR signal, the model is expected to describe the angular
dependence of the dipolar coupling in a systematic manner.
The systematic behavior may turn out to be useful in distin-
guishing between different pathologies. The model is par-
ticularly crude, since the orientation of the field is controlled
by fixing a parameter in the free energy that would not be
directly available to the experimenter in the same way that
the bulk thermodynamic properties are, e.g., temperature,
pressure, and volume. The original spectroscopic signal is
thought to come from a relatively free moving molecule con-
strained by the highly ordered structure of the muscle fibers.
The first step towards modeling this behavior was the devel-
opment of this model for the freely moving molecules. The

second stage and the subject of ongoing work is the devel-
opment of a constraining environment, which could be used
to describe changes in the MR signal as a function of the
model muscle fiber density and orientation.

ACKNOWLEDGMENTS

We would like to acknowledge Dr. Paul Bromily and Pro-
fessor Gareth Morris for their helpful discussion. D.C.W.
would like to thank the Medical Research Council for finan-
cial support.

APPENDIX A: DERIVATION OF THE HELMHOLTZ
FREE ENERGY

In order to derive an expression for the Helmholtz free
energy we exploit the idea, originally proposed by Onsager,
of treating molecules of a particular orientation as a distinct
speciesf10g. This effectively decouples the integration of the
partition function over the positions of the molecules from
the integration over molecular orientations. This concept is
extended to the orientation of the dipoles. From this a single
species is defined by a particular molecular orientationVi
and two dipole orientationsV1, andV2. The partition func-
tion QN,sV,T,Vi ,VjV1,V2d is factorized into three terms,

QNsV,T,V̂i,V̂ j,V̂1,V̂2d = QN
IdealfQ1

DDsV̂i,V̂1,V̂2dgN

3QN
ExcesssV,T,V̂i,V̂ jd. sA1d

QN
Ideal is the well known ideal gas contribution that arises

from the integration over the coordinates of momentumf15g.
Since dipoles in different molecules are noninteracting, the
dipole contributions do not depend upon the positions of the
centers of mass of the molecules. As a result this contribution
to the partition function can be obtained as the product ofN

dipole pair partition functionQ1
DDsV̂i ,V̂1,V̂2d. The final

term QN
ExcesssV,T,V̂i ,V̂ jd is the contribution due to the hard

sphero-
cylinders themselves. In this work we derive this contribu-
tion following Onsager. The Helmholtz free energyA is ob-
tained from the partition function through the standard ex-
pression for a Canonical ensemble,

AsV̂i,V̂ j,V̂1,V̂2d = − kT ln QNsV,T,V̂i,V̂1,V̂2d. sA2d

Here k is the Boltzmann’s constant. This leads to a decou-
pling of the free energy contributions,

AsV̂i,V̂ j,V̂1,V̂2d
NkT

=
Aideal

NkT
+

A1
DDsV̂i,V̂1,V̂2d

kT

+
AexcesssV̂i,V̂ jd

NkT
. sA3d

The free energy of the full ensemble can now be written as
the free energy of a mixture,
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A

NkT
= o xi ln xi + o x1 ln x1

+ o
i

o
j

o
1

o
2

xixjx1x2
AsV̂i,V̂ j,V̂1,V̂2d

NkT
. sA4d

In this xi is the mole fraction of molecules with orientation
Vi andx1 is the mole fraction of dipoles with orientationV1.
The components of the mixture are not discrete, however,
since the orientations of both the dipoles and the spherocyl-
inders vary smoothly over all possible orientations. The re-
sult is that the summations in Eq.sA4d must be written as
integrations over all possible molecular and dipolar orienta-
tions and the mole fractions continuous orientational distri-
butions functions,

A

NkT
=E fsV̂idln fsV̂iddV̂i +E rsV̂1dln rsV̂1ddV̂1

+E E E E AsV̂i,V̂ j,V̂1,V̂2d
NkT

3rsV̂1drsV̂2dfsV̂idfsV̂ jddV̂1dV̂2dV̂idV̂ j , sA5d

where the molecular orientational distribution is denoted as
fsVid and the dipole orientational distribution function as
rsV1d. In the case of linear dipoles and molecules,dV may
be written asd cosu df whereu is the polar angle andf the
azimuthal angle. The orientational distribution functions

are normalized under the conditionsefsV̂iddV̂i =1 and

ersV̂iddV̂i =1.
Substituting Eq.sA3d into Eq. sA5d gives the overall ex-

pression for the Helmholtz free energy,

A

NkT
=E fsV̂idln fsV̂iddV̂i +E rsV̂1dln rsV̂1ddV̂1 +

Aideal

NkT+

+E E A1
DDsV̂i,V̂1,V̂2d

kT
rsV̂1drsV̂2dfsV̂iddV̂1dV̂2dV̂i

+E E AexcesssV̂i,V̂ jd
NkT

fsV̂idfsV̂ jddV̂idV̂ j . sA6d

APPENDIX B: DERIVATION OF THE LANGEVIN FREE
ENERGY FOR A GAS OF FREE MAGNETIC
DIPOLES USING THE ONSAGER APPROACH

As described in Appendix A Onsager suggested that par-
ticles of different orientations could be considered as differ-
ent species and the free energy for a freely rotating system
could be derived as a mixture of different species. For a gas
of freely rotating noninteracting dipoles with dipole moment
m moving in an external magnetic fieldB the Helmholtz free
energy can be written as

A

NkT
=E rsV̂dlnfrsV̂dgdV̂ −

mB

kT
E cossudrsV̂ddV̂,

sB1d

where all the symbols have the same means as described
previously. For the dipoles the DODF does not depend on the
azimuthal angle and under the assumption that the solid
angle element is defined asdV=d cossuddf /4p it is possible
to integrate out the azimuthal dependence in Eq.sB1d giving

A

NkT
=

1

2
E

−1

1

rsudlnfrsudgd cossud

−
mB

kT

1

2
E

−1

1

cossudrsudd cossud. sB2d

Substituting Eq.s13d as the functional form of the DODF
and performing the required integrals we obtain

A

NkT
= lnS a

sinha
D + S1 −

mB

kT

1

a
Dscotha − 1d. sB3d

It is reasonably straightforward to show that the minimum of
this free energy expression with respect to the variablea
occurs whena=mB/kT. Substituting this result into Eq.sB3d
gives

Amin

NkT
= lnS a

sinha
D sB4d

which is exactly the Langevin free energy for a gas of non-
interacting dipoles. The derivation of this free energy can be
found in Refs.f13,15g.
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